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Laboratoire d’Océanographie Dynamique et de Climatologie, CNRS, Université Paris VI, Paris
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Abstract. Sea surface temperature, sea level, and pseudo wind stress anomaly data from
late 1996 to early 1998 are assimilated into an intermediate coupled model of the Tropical
Pacific. Model data consistency is examined. Impact of the assimilation on forecast is
evaluated. The ocean component of the coupled model consists of a shallow water model
with two baroclinic modes, an Ekman shear layer, and a mixed layer temperature
equation. The atmospheric model is a statistical one (based on dominant covariance of
historical surface temperature and pseudo wind stress anomaly data). The adjoint method
is used to fit the coupled model to 6 months of data by optimally adjusting the initial state
and model parameters. A forecast is performed using the end state of an assimilation
experiment as initial conditions and using parameters estimated during the assimilation
period. Thus the model state during the assimilation and that during the forecast belong
to the same model trajectory in different periods. Such an initialization procedure is useful
in avoiding initial shock during forecast due to inconsistency of an initial state with the
coupled model physics. As a result of optimal adjustments of initial state and parameters,
the model is able to reproduce observed interannual variability of sea surface temperature
and sea level reasonably well. The averaged residual model data misfits over various 6
month periods are 0.58C and 5 cm, respectively. The model has a limited skill in
reproducing much of the off-equatorial wind anomalies. The residual model data misfit in
pseudo wind stress anomaly is larger than 10 m2 s22. Forecasts initialized from the
assimilation product are overall more realistic than those simply initialized from wind-
forced ocean states. Consistent improvement due to optimal initialization is found for sea
surface temperature and sea level anomalies in the central-eastern Pacific and zonal
pseudo wind stress anomaly in the central Pacific, both in terms of root-mean-squared
deviation from and correlation with the data. The adjustments of parameters in addition
to initial state in a coupled context is found to be important to improving the model data
consistency during the assimilation and the forecast. In particular, the estimated drag and
damping coefficients properly regulate the relative strength of forcing and damping of the
ocean state so as to fit the three types of observations during the assimilation (initialization)
period, which facilitates the development of a large-amplitude warming event during the
forecast. The study demonstrates the utility of oceanic and atmospheric data to estimate
initial state and model parameters in a coupled context, which is useful to the evaluation,
improvement, and initialization of El Niño–Southern Oscillation forecast models.

1. Introduction

Modern space-borne and in situ observing systems such as
the altimeter onboard the TOPEX/Poseidon satellite and the
Tropical Ocean–Global Atmosphere (TOGA)-Tropical
Ocean-Atmosphere (TAO) array in the Tropical Pacific have
provided an unprecedented capability to monitor El Niño–
Southern Oscillation (ENSO) phenomenon, the most domi-
nant climate variability of the ocean and atmosphere on sea-

sonal to interannual timescales. The data stream is also playing
an important role in evaluating ENSO forecast models, im-
proving their physics and parameterizations, and providing
better initialization for forecasts.

A common approach to initializing a forecast model is to
assimilate data into the stand-alone ocean component and to
use the estimated ocean state to initialize the coupled ocean-
atmosphere model. Examples include the system constructed
by the National Centers for Environmental Prediction [Ji et al.,
1994a, 1994b; Ji and Leetmaa, 1997] on the basis of a coupled
general circulation model and that constructed by Kleeman et
al. [1995] on the basis of an intermediate coupled model. These
studies have demonstrated the positive impact of ocean data
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assimilation on initializing ENSO forecasts. However, such an
approach could lead to an initial state of the coupled model in
which the oceanic state is not consistent with that of the at-
mosphere and hence limit the predictive skill by creating an
“initial shock” in the forecast. This problem can be alleviated
by assimilating data in a coupled mode in which the ocean and
atmosphere states are adjusted simultaneously.

Such an attempt has been made by Chen et al. [1995] using
the Zebiak and Cane [1987] model based on a fairly simple
assimilation scheme in which the coupled model was nudged
toward wind data to obtain initial states for forecasts. Signifi-
cant improvement was found in the resultant prediction of the
sea surface temperature anomaly in the central eastern Pacific.
This improvement was attributed to the merit of initialization
in a coupled mode that minimized initial shock. However,
forecasts of the 1997–1998 El Niño using the same procedure
showed little skill. Chen et al. [1998] argued that the cause for
the poor forecast (of the 1997–1998 El Niño) was the lack of
ocean data influence. An additional effort was reported first to
assimilate sea level data (from tide gauge stations in the trop-
ical Pacific Ocean) into the ocean component of the coupled
model using a reduced space Kalman filter as described by
Cane et al. [1996]. The coupled model was then nudged toward
the resultant ocean states as well as wind data (as given by
Chen et al. [1995]) to produce initial states for forecasts. The
forecast of the sea surface temperature anomaly in the central
eastern Pacific during the 1997–1998 El Niño period was im-
proved as a result of this procedure. Apart from these two
studies, applications of data assimilation in a coupled mode to
initialization of ENSO prediction have not been reported. Ben-
nett et al. [1998] employed a much more advanced method to
assimilate optimally 1 year of thermocline depth, sea surface
temperature, and wind data simultaneously into a modified
Zebiak and Cane [1987] model. However, model-data consis-
tency and reanalysis of the data were the objectives of that
study, and no effort was made to evaluate the impact of the
assimilation on forecasts.

The effort reported here is an initial attempt to assimilate
several types of data simultaneously into a coupled model
using an advanced assimilation scheme and to evaluate its
impact on ENSO prediction. As a first step, the coupled model
used here (as described later) is admittedly too simple, and the
formulation of the assimilation can be further improved. The
purpose of this effort is not to deliver a system for ENSO
forecast. Instead, it is to explore an approach through which
oceanic and atmospheric data are optimally assimilated by a
coupled model, to evaluate the impact of the assimilation on
forecast, and to understand how the impact was achieved. In
contrast to previous studies that assimilated data into coupled
models, model parameters and initial conditions are adjusted
as part of the assimilation procedure.

Note that parameter estimation has been applied to simpler
ocean (only) models but not to coupled atmosphere-ocean
models. For instance, Smestad and O’Brien [1991] estimated
the phase speeds of equatorial waves in a reduced gravity
model; Yu and O’Brien [1991] estimated the wind stress drag
coefficient and eddy viscosity profile using an Ekman layer
model. Our results highlight the importance of parameter es-
timation in a coupled mode to improving model fits to data as
well as to improving prediction. Moreover, they serve to eval-
uate the impact of such data assimilation on ENSO forecast
and to isolate factors that limit the skills of the model because

of the lack of data influence from those due to incomplete
model physics.

The paper is organized as follows. Various components of
the coupled model, the data to be assimilated, and the assim-
ilation method are described in sections 2, 3, and 4, respec-
tively. Results of the assimilation experiments are discussed in
section 5. Hindcasts/forecasts initialized from the assimilation
products are presented in section 6. The role of parameter
estimation in fitting model to data, in forecasting, and in mod-
ifying the coupling regimes is further addressed in section 7.
The findings are summarized in section 8.

2. Model
Our coupled model is an “anomaly” type: it is meant to

describe the evolution of interannual anomaly relative to a
prescribed “background” seasonal cycle. Examples of an
anomaly model include those used by Zebiak and Cane [1987],
Battisti [1988], and Kleeman et al. [1995]. This subsection de-
scribes the components of our (anomaly) coupled model and
the determination of the climatological seasonal cycle.

The ocean basin covers the tropical Pacific, extending from
1288 to 2788E in longitude and from 28.758S to 28.758N in
latitude. The resolution is 28 in longitude and 0.58 in latitude.
The model has a rectangular basin and therefore does not
include any coastline. The ocean model has three components:
(1) a linearized shallow water equation on an equatorial beta
plane solved in terms of two baroclinic modes to reflect the
low-frequency motions associated with wind-forced Kelvin and
Rossby waves, (2) an Ekman shear layer to include the surface
enhancement of frictional current by direct wind forcing, and
(3) a simplified mixed layer thermodynamic equation that uses
the sum of the baroclinic and Ekman currents in the mixed
layer to simulate the evolution of the mixed layer temperature,
taken as sea surface temperature (SST). All components use a
leapfrog time-stepping scheme with a 5 day time step, in con-
trast to the Zebiak and Cane [1987] model, which uses a for-
ward scheme and a 10 day time step. The atmospheric com-
ponent is a statistical model. Such a coupled model is simpler
than the usual “intermediate” type [e.g., Zebiak and Cane,
1987; Kleeman, 1993] in the atmospheric component, simpler
than the “hybrid” type [Neelin, 1990; Barnett et al., 1993] in the
oceanic component, and much simpler than coupled general
circulation models [Ji et al., 1994b; Kirtman et al., 1997]. The
reasons for choosing such a coupled model for the initial effort
are (1) it serves as a baseline to evaluate the performance of
more complete models, (2) it allows an investigation of the
limits of simple physics in accounting for various observations
and in delivering prediction when prior observational data
have been assimilated, and (3) its relatively clear coding struc-
ture facilitates the construction of an advanced assimilation
scheme.

In the coupled model the variables computed by all compo-
nents are interannual anomalies. The seasonal climatology of a
variable, where needed, is prescribed. However, the baroclinic
and shear layer components can be run off-line and forced by
a prescribed total wind product to generate total current. This
is, in fact, how we obtained the climatological seasonal current,
which is then prescribed to the coupled (anomaly) model (as
discussed in section 2.5).

2.1. Baroclinic Component

Let ub, vb, and hb denote the baroclinic components of the
zonal current, meridional current, and sea level, and tx and ty

LEE ET AL.: DATA ASSIMILATION INTO COUPLED MODELS26,064



denote the zonal and meridional surface wind stress, the ba-
roclinic model equations can be written as

ub

t 2 byvb 1 g
hb

 x 5
tx

r0Heq
2 rbub, (1)

byub 1 g
hb

 y 5
t y

r0Heq
2 rbvb, (2)

hb

t 1 c2S ub

 x 1
vb

 y D 5 2rbhb, (3)

where Heq, c , and rb are the equivalent depth, wave speed,
and Rayleigh friction constant, respectively, of a baroclinic
mode. Heq and c are related by c2 5 gHeq (where g is the
gravitational acceleration). The equations are the same for
both modes except for differences in c (and thus Heq) and rb:
c being 2.8 and 1.3 m s21 and rb being the reciprocal of 12 and
6 months for modes 1 and 2, respectively. The phase speed for
the first mode is very close to that used in the Zebiak and Cane
[1987] model. The frictional timescales are chosen following
Picaut et al. [1993]. Note that these timescales are much
shorter than that used in the Zebiak and Cane [1987] model (30
months). Perigaud and Dewitte [1996] also reported that for the
Zebiak and Cane [1987] model in a forced mode, a 9 month
frictional timescale results in better comparison of sea level
anomaly with observations than the original 30 month one
does. The sum of the solutions for the two modes gives rise to
the total baroclinic horizontal velocity and sea surface height
anomalies (SSHA). The baroclinic equations are solved in a
way similar to that described by Cane and Patton [1984]. The
solution is split into a Kelvin part and a non-Kelvin part (long
Rossby waves and anti-Kelvin waves propagating along the
southern and northern boundaries of the ocean model). The
Kelvin part is integrated from the western boundary to the
eastern boundary; the non-Kelvin part integrated from the
eastern boundary to the western boundary. Such a scheme
allows the use of a large time step (presently 5 days).

2.2. Shear Layer Module

Following Blumenthal and Cane [1989], a shear layer model
is used to compute the wind-forced surface current contribu-
tion not estimated by the baroclinic model. Introducing
(us, vs) as the shear currents, the shear layer model equations
are

us

t 2 byv s 5
tx

r0
S 1

HML
2

1
HD 2 rsus (4)

v s

t 1 byus 5
t y

r0
S 1

HML
2

1
HD 2 rsv s, (5)

where HML is the mixed layer depth (50 m), H is (H1
21 1

H2
21)21 (H1 and H2 are both 200 m), and rs is a Rayleigh

friction taken to be the reciprocal of 2 days (same as that used
in the Zebiak and Cane [1987] model). The shear layer solution
is computed on the same grid as the baroclinic model. The
shear current and baroclinic current sum up to the total hori-
zontal surface current in the mixed layer, u 1 v . Vertical
velocity w at the base of the mixed layer is diagnosed from u
and v using the continuity equation. These horizontal and
vertical velocities will be used in the computation of SST evo-
lution to be described next.

2.3. Mixed Layer SST Component

The surface temperature anomaly in the mixed layer is com-
puted on a C grid, with a spatial resolution identical to the
baroclinic component previously described, over the domain of
1298–2778E and 28.58S to 28.58N. The equation is similar to
that of the Zebiak and Cane [1987] ocean model but has dif-
ferent subsurface temperature parameterization:

T
t 5 2

@~u# 1 u!T#

 x 1 T
~u# 1 u!

 x 2
~uT# !

 x 1 T#
u
 x

2
@~v# 1 v!T#

 x 1 T
~v# 1 v!

 x 2
~vT# !

 x 1 T#
v
 x

1
@M~w# 1 w! 2 M~w# !#~T# 2 T# sub!

HML

2
M~w# !~T 2 T sub!

HML
2 rTT . (6)

Quantities with and without the overbar correspond to the
seasonal climatology and interannual anomalies, respectively.
The first four terms in (6) are mathematically equivalent to
(u# 1 u) T/ x 1 u T/ x (advection of temperature anom-
aly by total zonal current plus advection of climatological tem-
perature by anomalous zonal current). However, this form is
numerically not as accurate as the four-term form in (6). M( x)
is a mixing function such that M( x) 5 x if x . 0 and M( x) 5
0 if x , 0, rT is a Rayleigh friction taken to be the reciprocal
of 125 days (same as that used in the Zebiak and Cane [1987]
model). Tsub is the subsurface temperature at the base of the
mixed layer being advected into the mixed layer. The subsur-
face temperatures T# sub and Tsub are parameterized as follows.
First, the actual mixed layer depth HML

obs , defined as the depth
at which the subsurface temperature is 0.58C less than the
surface temperature [cf. Levitus, 1982], is first determined at
every grid point and every month from expandable bathythe-
rmograph (XBT) data for the period of 1980–1994 [Smith,
1995]. A subsurface temperature is then derived by requiring
the vertical temperature gradient across the 50 m model mixed
layer depth to be equal to that across the actual mixed layer:
SST 2 0.5 HML/HML

obs . Such a subsurface temperature field is
then separated into the seasonal climatology T# sub

obs and the
interannual anomaly Tsub

obs. The former is prescribed as T# sub in
(6). The latter is used to compute the interannual anomaly of
dynamic height hobs. The model’s subsurface temperature
anomaly Tsub is parameterized in terms of the model’s height
anomaly h through the following analytical relation

T sub 5 a1 tanh ~b1h! , h . 0,

T sub 5 a2 tanh ~b2h! , h , 0,

where the four coefficients a1, a2, b1, and b2 are estimated
at each grid point by optimizing the fit of Tsub

obs to hobs. A more
complete description of the subsurface temperature parame-
terization is given by Boulanger [2000].

2.4. Atmospheric Component and Coupling

The statistical atmosphere model is similar to the one de-
scribed by Syu et al. [1995]. The spatial covariance between
observed sea surface temperature anomaly (SSTA) compiled
by the National Oceanic and Atmospheric Administration
(NOAA) Climate Analysis Center and the pseudo wind stress
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anomaly (PWSA) data compiled by the Florida State Univer-
sity (FSU) are calculated for the region within 6158 of the
equator over the period 1980–1995. Singular value decompo-
sition (SVD) is applied to computing the dominant modes of
the covariability. Syu et al. [1995] found that the first seven
modes account for 80–90% of the total interannual variance,
with the variance of the first mode 4 times larger than that of
the second mode. Their choice to use the first seven modes is
somewhat arbitrary. In our study, only the first four modes are
used as we found little difference in the overall behaviors of 1
year forecasts using the first four and the first seven modes. Let
Tn( x , y) and t̂n( x , y) denote the spatial singular vectors for
SSTA and PWSA (both for the zonal and meridional compo-
nents) for the nth mode, respectively, and let aT(t) and a t̂(t)
denote the (best fitted) amplitude time series of the corre-
sponding mode. The observed SSTA and PWSA can be ap-
proximated by

Td~ x , y , t! < O
n51

4

Tn~ x , y!an
T~t! (7)

t̂d~ x , y , t! < O
n51

4

t̂n~ x , y!an
t̂~t! . (8)

Let st̂
n and sT

n represent the rms amplitude of t̂n( x , y) and
Tn( x , y), respectively; an 5 st̂

n/sT
n , the model’s wind stress

anomaly, is generated as follows.
First, the model SSTA, Tm( x , y , t), is projected onto the

SSTA singular vectors by

An~t! 5 Exy

Tm~ x , y , t!Tn~ x , y! dx d y . (9)

The model’s PWSA is then determined through

t̂m~ x , y , t! 5 O
n51

N

An~t!ant̂n~ x , y! . (10)

Note that model PWSA is generated only for the region within
6158 of the equator because the SVDs are only computed for
this area. The wind outside 6158 is determined by tapering off
the values at 6158 (at each longitude) away from the equator
with a Gaussian function. Therefore the region outside 6158 of
the equator is more of a buffer zone. The PWSA is converted
to the wind stress anomaly that drives the ocean model through
the bulk formula racdt̂m, where ra is air density (1.2 Kg m23)
and cd is the drag coefficient. The value of cd is chosen to be
1.2 3 1023, the same as that used by Syu et al. [1995].

To facilitate subsequent discussion about the role of the
various SVD modes, the spatial SVDs of the four modes are
shown in Plate 1. Mode 1 (Plates 1a (left) and 1a (right))
describes the covariability between zonal wind stress variability
in the central Pacific and that of SST in the central-eastern
Pacific. Mode 2 (Plates 1b (left) and 1b (right)) reflects the
covariability between zonal wind stress in the central-eastern
Pacific and that of SST near the eastern boundary (off South
America). These two modes highlights the “central-eastern”
and “eastern” warming, respectively, which are known to differ
in magnitude and timing among different El Niño events. The
patterns of modes 3 and 4 are more difficult to interpret (al-
though mode 3 appears to be somewhat similar to mode 2).

Note that an SVD mode alone, especially toward higher mode,
does not necessarily represent any physics because they are
simply statistical basis functions that are orthogonal to one
another.

2.5. Seasonal Climatology

There are five seasonal climatologies needed (all of them
used in (6)) in order to run the coupled model: T# , T# sub, u# , v# ,
and w# . T# is determined from monthly SST data from 1980 to
1996 compiled by the NOAA Climate Analysis Center. The
determination of T# sub was discussed in section 2.3. The spec-
ification of u# , v# , and w# , ideally, should also be based on
observations. Unfortunately, there is no observation of the
vertical velocity. In the present study the climatological current
is obtained from an extended run of the baroclinic and the
shear layer model forced by the seasonal climatology of the full
wind stress compiled by FSU. In Figure 1, the model’s clima-
tological surface current in April and October are compared
with Reverdin et al.’s [1994] analysis of climatological seasonal
current at 15 m depth based on drifting buoy and current meter
data (available through the International Research Institute
(IRI)/Lamont-Doherty Earth Observatory (LDEO) Climate
Data Library site http://ingrid.ldeo.columbia.edu). Note that
the data have a much coarser resolution than the model. The
model’s South Equatorial Current (SEC), North Equatorial
Countercurrent (NECC), and the North Equatorial Current
(NEC) in both seasons bear much resemblance to the observed
climatology. For example, both the model and data show a
“split” of the westward SEC into a northern and a southern
branch by an equatorial eastward flow east of 2008E in April
but not in October. The model’s currents are generally weaker
than the observational counterparts, probably because of the
lack of nonlinearity or frictional timescales being too short in
the ocean model.

2.6. Initialization

The initial state of the coupled model consists of initial
SSTA, components of SSHA, and anomalous current associ-
ated with the Rossby and Kelvin solutions for different modes.
The atmospheric state (wind stress) is not part of the initial
state. Conventionally, an initial state is obtained by forcing the
ocean model with observed wind. A somewhat different strat-
egy is used here. The ocean model is forced by a “statistical”
wind anomaly generated from the projection of observed
SSTA onto the SVDs. This is different from a coupled run
because PWSA is generated by observed (as opposed to
model) SSTA through the SVDs. Comparing to forcing the
ocean model by observed wind stress anomaly, this initializa-
tion approach is more consistent with the coupled model and
is less likely to produce initial shock in a forecast. The resultant
ocean states are used as prior initial conditions for the assim-
ilation experiments to be described in section 4. Throughout
the text, the units of SSHA, SSTA, and PWSA are all centi-
meter, degree, and m2 s22, respectively.

3. Data
Three types of data are assimilated into the coupled model:

SSH, SST, and wind stress. All data used are monthly averages
and are mapped to the model grid described in section 2. The
SSH data used are from the TOPEX/Poseidon altimeter [Fu et
al., 1994]. SST data, obtained from a Columbia University Web
site http://ingrid.ldgo.columbia.edu/SOURCES, were com-
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Plate 1. The four modes of SVD for (left) zonal pseudo wind stress and (right) SST. Modes 1 and 2 reflect
warming in the central-eastern and eastern Pacific, respectively.
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Plate 2. Rms differences between simulation and data for (a) surface temperature, (b) sea level, (c) zonal,
and (d) meridional pseudo wind stress anomalies.
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Plate 3. Rms differences between assimilation and data for (a) surface temperature, (b) sea level, (c) zonal,
and (d) meridional pseudo wind stress anomalies.
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piled by the NOAA Climate Analysis Center. The wind data
are zonal and meridional pseudo wind stress compiled by the
FSU, also available through the above Web site. Only interan-
nual anomalies of these three types of data are assimilated as
our coupled model is an (interannual) anomaly model as de-
scribed in section 2. The interannual anomalies for SST and
pseudo wind stress data are obtained by removing the clima-
tological seasonal cycle averaged between 1980 and 1996 from
the full data. Those of SSH are derived by removing the sea-
sonal cycle averaged between October 1992 to October 1996.

4. Assimilation Method
To define the fit of the coupled model to the data, a cost

function is formulated to penalize model data misfit in SSHA,
SSTA, and wind anomalies during the assimilation period:

J 5 ~hm 2 hd!
TWh~hm 2 hd! 1 ~Tm 2 Td!

TWT~Tm 2 Td!

1 ~ t̂m
x 2 t̂d

x!TW t̂~ t̂m
x 2 t̂d

x! 1 ~ t̂m
y 2 t̂d

y!TW t̂~ t̂m
y 2 t̂d

y!

where h, T, and t̂ represent vectors of SSHA, SSTA, and
PWSA. Different elements in a vector correspond to different

Figure 1. Comparison of model’s climatological surface current in (a) and (c) April and October with (b)
and (d) Reverdin climatology.

26,071LEE ET AL.: DATA ASSIMILATION INTO COUPLED MODELS



grid points and different months. Subscripts m and d denote
model and data. The Ws are weight matrices and ideally should
be inversely proportional to the covariance of the measure-
ment error and the representation error (see Lorenc [1986] for
the latter). Because of the lack of knowledge about temporal
and spatial correlations of the errors, the off-diagonal elements
are set to zero, i.e., assuming the errors are independent in
space and time. The diagonal elements are set to the inverse
square of a priori standard errors, being 5 cm for the SSHA,
0.58C for the SSTA, and 10 m2 s22 for the PWSA. We seek a
solution of the coupled model, which minimizes J by adjusting
the control variables. The control variables include the initial
conditions and the model parameters.

The initial conditions are initial values of SSTA and com-
ponents of SSHA and zonal current anomalies within 6158 of
the equator. Their a priori errors are very difficult to determine
(as Bennett et al. [1998] reported for the modified Zebiak and
Cane [1987] model). In our initial attempt, there is no explicit
penalty for the deviation of initial conditions from the first
guess. However, the penalty of model-data misfit imposed in
the first time step of each assimilation experiment provides a
stringent constraint to the adjustment of the initial conditions.

Model parameters adjusted are the drag coefficient, fric-
tional timescales for the two baroclinic modes and for the
shear layer component, and the relaxation timescale in the
SSTA equation. An inequality constraint is implemented to
prevent the estimated value to become negative. This is
achieved by estimating the squared root of a coefficient. The
square of the estimate is then positive. In addition to these
coefficients, the rms amplitude (st̂

n and sT
n ) of various eigen-

modes are also treated as control variables. Adjusting st̂
n and

sT
n serves the following main purpose: the original weights for

different SVD modes, an 5 st̂
n/sT

n , describe the contribution
of different modes averaged over the time period of the his-
torical data. Adjusting st̂

n and sT
n (and thus an), according to

the data during the assimilation period, can account for the
variation of the relative dominance of different modes (e.g.,
modes 1 and 2, which reflect the eastern-central and eastern
warming, respectively). The adjustments of st̂

n and sT
n and that

of the drag coefficient are not redundant to each other. For a
fixed time level the former serves to reduce the model-data
misfit in PWSA, whereas the latter acts to produce more real-
istic SSHA and SSTA. The adjustment of a parameter is in-
tended to compensate for model error associated with the
value of the parameter. The form of parameterization may
present another type of model error (e.g., drag coefficient that
is independent of wind speed and linear form of frictions).
Parameter estimation can also be used to understand this type
of model error.

In principle, the deviation of an estimated parameter from
its first guess should be penalized in the cost function to in-
crease the probability of obtaining a unique estimate. Never-
theless, a strong penalty would result in biased estimates if the
weights are incorrectly prescribed, whereas a weak penalty has
little effect on the estimation. For this initial effort the ranges
of model parameters are not explicitly penalized in the cost
function, implying that little is known about the errors of the
parameters. They are, however, implicitly constrained by the
model-data misfits of SSTA, SSHA, and PWSA. The variation
of parameter values estimated from data in different periods
provides a basis to assess the errors of these parameters, which
can be further implemented in the cost function to refine the

estimates. The same applies to the evaluation of a priori errors
for initial conditions.

The adjoint method is used to compute the gradient of J
with respect to the control variables. The principle of this
method is well documented [e.g., Thacker and Long, 1988] and
so will not be repeated here. The majority of the adjoint code
is machine-generated using a software called the Tangent Lin-
ear and Adjoint Model Compiler developed by R. Giering
[Giering and Kaminski, 1998]. The adjoint gradients are used in
a preconditioned conjugate gradient algorithm to adjust the
control variables iteratively so as to minimize J .

Only data between 158S and 158N are assimilated because
this is the region of active dynamics, thermodynamics, and
coupling in the model, as discussed in section 2. The temporal
integration period for each minimization is 6 months. The data
constraint is effective only at the middle of each month. The
total number of data is roughly twice the total number of
control variables for such an integration period. When a 6
month assimilation experiment is completed, a forecast is per-
formed using the end state of the assimilation as initial condi-
tions and using the estimated parameters obtained from the
assimilation. In a subsequent experiment the time window is
shifted forward by 1 month. The assimilation and forecast
procedure are then repeated.

5. Results of the Assimilation Experiment
After 100–200 iterations of the minimization procedure the

model-data misfit for SSTA and SSHA are reduced to levels
that are close to their a priori errors. However, the estimated
zonal PWSA is generally weaker than the observed values. The
rms model-data misfits averaged over various 6 month mini-
mization experiments are reduced from the prior values of 8.4
to 4.7 cm for SSHA, 0.938 to 0.468C for SSTA, 16.8 to 15 m2 s22

for zonal PWSA, and 11.2 to 10 m2 s22 for meridional PWSA.
Except for zonal PWSA all other quantities agree with the data
to within the a priori errors of 5 cm, 0.58C, and 10 m2 s22.

To show where these reductions of model-data misfits come
from geographically, the spatial distributions of the misfits
before and after the data assimilation are shown in Plates 2 and
3. Note that both the simulated and assimilated solutions were
obtained in a coupled context. One can think of them as cor-
responding to the first and last iterations of the optimization,
respectively. Therefore they should not be confused with the
rms maps between forecasts and observations to be presented
in section 6. Before the assimilation, large model-data misfits
are seen for (1) SSTA in the eastern equatorial Pacific and off
the coast of South America (Plate 2a), and (2) SSHA in the
central to eastern equatorial Pacific and the western Pacific
between 58 and 108N (Plate 2b), an area of significant Rossby
wave–like activity. These differences are much reduced after
the assimilation (Plates 3a and 3b). This demonstrates a rea-
sonable skill of the model in reproducing much of the observed
variability in SSTA and SSHA during the 1997–1998 El Niño.
The impact of the assimilation is not limited to the equatorial
“Kelvin wave” band, but occurs for the off-equatorial “Rossby
wave” band in the western Pacific as well. For PWS anomalies,
large rms differences from the data exist for both assimilation
and simulation. However, the assimilation is closer to data in
the equatorial band than the simulation is. For instance, the
residual of zonal PWS anomaly between 1808 and 2208E near
the equator is much smaller for assimilation than for simula-
tion (Plates 2c and 3c). This is important because the zonal
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wind variability in this area (Plate 1a) is associated with the
warming in the central-eastern Pacific. For the meridional
PWS the most significant improvement due to the assimilation
is the reduction of rms difference in 2008–2108E, 78–158N.

To illustrate the temporal evolution of the estimated fields,
the longitude-time structure of the estimated equatorial zonal
PWSA, SSTA, and SSHA for two consecutive experiments
(January to July 1997 and July 1997 to January 1998) presented
in Figures 2a–2c in comparison with the data shown in Figures
2d–2f. The dominant temporal variations in the estimated
fields resemble the observations reasonably well.

The estimated zonal PWSA is smoother and overall weaker

than the observed values. The westerly wind bursts in the
western Pacific were not recovered because the SVDs, a low-
passed filter in nature, cannot reproduce these transient fea-
tures. The gradual buildup of westerly wind anomaly in the
western and central Pacific in early 1997 was captured but with
a weaker intensity than the data. Consequently, the estimated
anomalous warming in the western to central Pacific is weaker
than the observation. The anomalous warming in the eastern
Pacific (near the model’s eastern boundary) is also weaker than
the observed strength.

Selected estimated fields from the two aforementioned as-
similation experiments, corresponding to July 15, 1997, and

Figure 2. Estimated (a) zonal pseudo wind stress, (b) surface temperature, and (c) sea level anomalies at the
equator from two assimilation experiments (January to July 1997 and July 1997 to January 1998) and (d)–(f)
the corresponding observations.
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December 15, 1997, are shown in Plates 4 and 5 in comparison
with the corresponding data. The dominant spatial patterns of
the estimated fields are very similar to the data. The differ-
ences mostly appear in the strength and to some degree in the
spatial extent of the patterns. The most notable difference is in
the PWSA.

The improvements in the assimilation products are due to
(1) the correction of initial condition, which results in better
agreement with data, and (2) the adjustment of model param-
eters, which regulates the balance between forcing and damp-
ing in the ocean component and thus the strength of the cou-
pling. The following discussion elucidates point 2, which is not
as intuitive as point 1.

Table 1 shows the estimates of the model parameters for
various 6 month assimilations. The estimated drag coefficient
is generally larger, corresponding to an enhanced coupling
strength and larger forcing for the ocean component. The
estimated baroclinic frictional timescales and relaxation time-
scale for SSTA are generally longer than their corresponding
prior values, resulting in weaker damping. These adjustments
reflect the data constraint that requires the model to reproduce
the rapid development of the large-amplitude warming event.
In the coupled model the drag coefficient and the damping
coefficients affect the strength of forcing and damping of an
oceanic anomaly. This, in turn, affects the coupled evolution of
the anomaly. Therefore the estimated coefficients contribute
significantly to the improved development of the warming
event in the assimilation product.

The difference in the values of parameters for various ex-
periments is relatively large. One possible cause is estimation
error due to the mutual compensation between the forcing and
damping constants. For example, the three experiments cov-
ering the periods of February to August 1997, March to Sep-
tember 1997, and April to October 1997 have relatively small
drag coefficients (weaker forcing) and relatively long baroclinic
and SSTA damping timescales (weaker damping). The oppo-
site tendency is found for the first three experiments (large
drag coefficients and and short damping timescales). To re-
duce these compensations, one needs to determine the error of
each parameter accurately and use it to impose an explicit
penalty for the parameter in the cost function. The variation of
parameters found in this initial attempt is helpful in choosing
suitable errors for a refined estimation.

Variation in the estimated parameters may also reflect the
limitation in the form of the parameterization. In principle, the
drag coefficient should vary in space and time depending on
wind speed and air-sea temperature difference [Trenberth et al.,
1989]. A constant drag coefficient would absorb this depen-
dence by changing the constant itself. The same is true for the
damping coefficients. Dissipation in the real ocean depends on
the flow field in a far more complicated way than through a
linear form with a constant coefficient. The unresolved physics
that the parameterization intends to parameterize could vary
in space and time and is thus not accounted for by a constant
coefficient.

The difference between the prior and the averaged estimate
for the drag coefficient, 1.20 3 1023 versus 1.55 3 1023, is
smaller than the scatter among various observations discussed
by Large and Pond [1981]. It is also within the range of analysis
errors considered by Trenberth et al. [1989] if space-time vari-
ations are taken into account. The difference between the prior
and the averaged estimates for the baroclinic damping time-
scales is fairly large (12 and 6 months versus 60 and 30 months

for the two vertical modes, respectively). The value of 12
months was chosen primarily on the basis of previous experi-
ence for forced ocean models with only one vertical mode to
reproduce the overall sea level variability over periods where
ENSO events are not as strong. The values estimated here are
based on a coupled model with two vertical mode fitted to
three types of data over a short period where the magnitude of
the anomalous state is unprecedented. In addition to the dif-
ferences between forced and coupled models, a two-mode
ocean model does not necessarily share the same damping
coefficient as that with only one mode for the following rea-
sons. The frictional constant is meant to “parameterize” the
contributions from some unresolved physics. These contribu-
tions are model-dependent (apart from being space- and time-
dependent). A model with more complete physics needs less
contribution from the unresolved physics (i.e., a reduction in
the value of the “damping” constant). The second vertical
mode includes some physics not represented by the one-mode
model. Therefore the reduction of damping constant (less con-
tribution from unresolved physics) is not unreasonable. The
above rationale is somewhat analogous to ocean general cir-
culation model (OGCM) mixing coefficients, which should de-
crease if the physics that explicitly describe the mixing pro-
cesses is included or as the resolution increases.

It is also important to emphasize that we are not suggesting
that the values of the parameters estimated from the data
during the warming phase of the 1997–1998 event be used as
climatological values to simulate the overall variability in pre-
vious data. None of the previous events match the unprece-
dented magnitude of the current one. In fact, our on-going
work on fitting the model to observations in the early 1990s
generally results in damping timescales that are shorter than
the present estimates (somewhat similar to the first two exper-
iments as listed in Table 1). Those results will be reported in a
separate paper along with an application of the assimilation
procedure to the data in the 1980s. A relatively long damping
timescale of 30 months was used in the Zebiak and Cane [1987]
model for all conditions. Because of possible model depen-
dence, we cannot comment on whether this timescale would
produce a more realistic state during 1997 than a shorter time-
scale would for that model.

Apart from the forcing and damping coefficients, the (rms)
amplitude of various eigenmodes for SSTA and PWSA is also
adjusted during the assimilation (see section 4). Thus the
weights for different SVD modes, an 5 st̂

n/sT
n , are modified

to allow a better fit of the model state to the data. The adjust-
ment of an is much smaller than the adjustments of the drag
and damping coefficients. On average, an increases by 1, 4, 14,
and 221% for modes 1–4, respectively (negative means de-
crease). The variation of the changes among various experi-
ments is relatively large (50–100%) because of estimation er-
rors associated with mutual compensation (similar to that for
the drag and damping coefficients). This variation precludes
the possibility of examining the relative role of different modes
among different experiments. However, the signs of the mean
values are consistent with the improved model fit to the data as
described below. As discussed in section 2, modes 1 and 2
(Plate 1) describe the eastern-central and eastern warming
patterns, respectively; mode 3 also appears to contribute to
warming near the eastern boundary. The 1997–1998 El Niño
resembles a classical one (e.g., the 1982 El Niño) in many
aspects but with more intense warming in the eastern-central
and eastern equatorial Pacific. Therefore the consistent in-
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creased weights for modes 1–3 reflect the need to enhance the
contributions from these modes to account for the unprece-
dented magnitude of this El Niño. In particular, the enhanced
mode 3 seems to help produce a significant warming near the
eastern boundary from 08 to 108S (e.g., Figure 2b), which
significantly reduced the model-data misfit in that region
(Plates 2a and 3a). The reduction of the weight for mode 4 is
somewhat obscured because of the lack of evidence to tie this
mode directly to a physical feature. One may argue that this
mode does not represent the dominant signal of a classical El
Niño and is thus down-weighted. These sensible adjustments
underline the potential usefulness of adjusting the weights of
different modes computed from historical data using several
types of current data.

6. Forecast Experiment Based
on Assimilation Products

The assimilation products presented in section 5 are used to
initialize forecasts. The ocean state at the end of a 6 month
assimilation serves as the initial state. Parameters estimated
during the assimilation period are used for the forecast. Thus
the model states during the assimilation and the forecast pe-
riods belong to the same coupled model trajectory. This elim-
inates the initial shock of a forecast caused by the inconsistency
of the initial state with coupled model physics.

In order to evaluate the quality of the forecasts, several
regions are selected in which a spatially averaged variable, or
index, is examined. These regions include Niño3 (central-
eastern equatorial Pacific 2108–2708E and 58S–58N, area of
large SSTA and SSHA), Niño4 (western-central equatorial
Pacific 1608–2108E and 58S–58N, an area of large zonal PWS
variability), Niño6 (northwestern tropical Pacific 1408–1808E
and 28–108N, an area of large SSHA associated with Rossby
wave–like variability), and Niño7 (north-central tropical Pacific
2008–2408E and 28–108N, an area of large meridional PWS
variability).

The predicted Niño3 index for SSTA, Niño3 and Niño6
indices for SSHA, Niño4 index for zonal PWS, and Niño7
index for meridional PWS resulting from forecasts initialized

from the assimilation products are shown in Figures 3a–3e.
The counterparts derived from forecasts simply initialized
from the ocean states forced by “statistical wind” (see section
2) with default parameters are shown in Figures 3f–3j. With
data assimilation in the initialization phase (optimal initializa-
tion), improvement is seen in the following aspects: (1) the
magnitude of the anomalies are larger and closer to the ob-
served ones, (2) the time of the peak warming is close to
December 1997 as observed (forecasts without optimal initial-
ization always peak slightly after the initialization), and (3) the
evolution of the anomalous state from the warming to the
initial decay phase is more consistent with the data. Judging
from Niño3 SSTA, a commonly presented index from various
ENSO forecast models, the present system can predict a larger
amplitude of SSTA for this warming event than most statistical
based hindcasts/forecasts and is close to many forecasts based
on much more complicated models, some also with data as-
similation in the initialization phase.

Even with optimal initialization, the forecast significantly
underestimated the magnitude of the warming if starting be-
fore, say, May 1997. This seems to be caused by the underes-
timate of the strength of the westerly wind stress anomaly,
which emerged in late 1996 and evolved through the spring of
1997 (the statistical atmosphere cannot represent these fea-
tures). However, from late spring and early summer of 1997
the model (with optimal initialization) reasonably reproduced
the rapid development of the observed warming, its amplitude
and phase, and its initial decay.

To examine the temporal evolution along the equator, vari-
ables predicted by forecasts initialized in March 1997, with and
without data assimilation prior to the forecast (optimal initial-
ization), are presented in Figure 4 together with the corre-
sponding observations. Note that the contour intervals for the
forecasts are half of those for the observations. The forecast
without optimal initialization failed to show any significant
warming. That with optimal initialization predicted a warming
over 28C in the central-eastern Pacific with a peak time that
agrees with the data (December 1997). The pool of maximum
warming is too narrow and somewhat too westward compared

Table 1. Parameters Estimated From Various Assimilation Experimentsa

Drag
Coefficient
(3 1023)

Baroclinic
Frictional
Timescale
(Mode 1),

months

Baroclinic
Frictional
Timescale
(Mode 2),

months

Ekman
Frictional
Timescale,

days

Surface
Temperature

Anomaly
Damping

Timescale,
days

Sept. 1996 to March 1997 1.57 21 10 5.24 120
Oct. 1996 to April 1997 1.58 27 13 5.48 120
Nov. 1996 to May 1997 1.55 40 21 2.93 152
Dec. 1996 to June 1997 1.50 71 50 0.57 218
Jan. 1997 to July 1997 1.56 80 47 0.50 198
Feb. 1997 to Aug. 1997 1.30 102 45 0.51 232
March 1997 to Sept. 1997 1.40 110 27 0.50 181
April 1997 to Oct. 1997 1.45 84 54 0.52 215
May 1997 to Nov. 1997 1.62 51 27 0.54 151
June 1997 to Dec. 1997 1.77 47 25 0.25 131
July 1997 to Jan. 1998 1.75 37 20 0.51 136
Average for various experiments 1.55 61 31 1.59 168
Prior values 1.2 12 6 2.0 125

aBaroclinic frictional timescales are rounded to the nearest integer month, and surface temperature
anomaly damping timescales are rounded to the nearest day. The averaged values over various experi-
ments and the prior values are also listed.
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to the data. This is related to the narrow longitudinal extent of
the predicted maximum PWSA. Figure 5 shows another case
where the forecasts are initialized in July 1997. By this time the
forecast with optimal initialization is able to predict an anom-
alous warming that is close to the observed magnitude.

An unsatisfactory aspect in the forecast after the peak warm-
ing is the delayed transition from warm to normal condition in
the Niño3 area during the late spring of 1998 (Figures 3a and
3f). The observed abrupt switch from warm to cold condition
east of the dateline (Figure 5h) was not captured by the model
regardless of the initialization method. The observed easterly
wind burst in May 1998 in the western Pacific (Figure 5g) may
have contributed to this sudden transition. The inability to
predict these easterly wind burst in almost all forecast models
might be a major cause for the failure to predict the abrupt
transition.

Unlike in the Niño3 region, the transition from warm to cold
condition in the central equatorial Pacific (Niño4 region) is
premature for the forecasts: it occurred in early 1998 rather
than in May–June 1998 as observed (Figures 5b and 5h). As-
sociated with this premature cooling is an easterly wind anom-
aly near the dateline (Figures 5a and 5d), which is not sup-
ported by observation (Figure 5g). Again, optimal initialization
did not cause the premature cooling and related easterly be-
cause these features appear in forecasts with and without op-
timal initialization. However, the magnitude of the cooling is
enhanced by the optimal initialization. This is a result of the

relatively symmetric nature of the statistical atmosphere with
respect to positive and negative anomalies: if the model is
fitted to a large-amplitude warming event (during the assimi-
lation period), it would evolve into a large-amplitude cooling
event (during the forecast). Reproducing the asymmetry of El
Niño and La Niña events remains to be a challenge to this class
of models.

The overall impact of optimal initialization on forecasts are
further illustrated by the rms deviations of predicted variables
from the corresponding observations in Plates 6 (3 month lead
time) and 7 (9 month lead time). Plates 6a–6c and 7a–7c are
for forecasts without optimal initialization, and Figures 6d–6f
and 7d–7f are for forecasts with optimal initialization. The
differences in rms deviations from the data with and without
optimal initialization are shown in Plate 8 (negative values
indicate improvement). The observed rms variations are shown
in Plate 9 for reference. Consistent improvement (reduction in
rms deviation from the data) is found for SSTA and SSHA in
the central-eastern Pacific Niño3 area and zonal PWSA in the
central Pacific. Averaged over lead times of 1–12 months (not
shown), the reduction in rms deviation is 0.5–18C for SSTA and
4–7 cm for SSHA in the central-eastern equatorial Pacific and
5–10 m2 s21 for zonal PWSA in the central Pacific. The im-
provement is larger than the prior errors for SSTA and SSHA
used during the assimilation.

In the western-tropical Pacific between 28 and 108N (the
“Rossby wave band”), improvement is clearly seen for SSHA

Figure 3. Forecasted indices Niño3 SSTA, Niño3 SSHA, Niño6 SSHA, Niño4 zonal PWSA, and Niño7
meridional PWSA: (a)–(e) forecasts with and (f)–(j) without data assimilation in the initialization phase.
Shaded curves represent data (see text for definitions of indices).
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for shorter lead times (Plates 6b, 6e, and 8b). For longer lead
times, however, the rms deviation of SSHA is actually larger
for forecasts with optimal initialization (Plate 7b, 7e, and 8e).
Figures 3c and 3h (the averaged SSHA in the Niño6 area)
illustrate the cause for this increase in rms deviation. The
predicted magnitude of the negative SSHA is larger and more
realistic than that without optimal initialization. Nevertheless,
the predicted transition from negative anomaly to normal con-
dition is delayed compared to the data. The larger amplitude
of SSHA resulting from optimal initialization, when offset in
time from the data, results in relatively large rms deviation
from the data. Actually, the predicted SSHA without optimal
initialization returns to the normal state even later (November

1998; see Figure 3h). The reason for the smaller rms deviation
without optimal forecast is because the predicted SSHA is very
small throughout. Similar to the delayed cooling in the Niño3
area and premature cooling in the Niño4 area, the delayed
transition of negative SSHA to normal condition in this band is
not caused by optimal initialization because it exists in the
forecast without optimal initialization as well.

For longer lead times, SSTA near 1808–2108E and zonal
PWSA near 1808E have larger rms deviations for forecasts with
optimal initialization. This is a result of the premature cooling
and easterly discussed earlier (referenced to Figure 5), which
exists in forecasts with and without optimal initialization but is
enhanced in magnitude by the optimal initialization.

Figure 4. Predicted and observed longitude-time distribution of zonal pseudo wind stress, surface temperature,
and sea level anomalies at the equator. The predictions are obtained from forecasts starting in March 1997.
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Another means of illustrating the impact of data assimilation
on forecasts is through spatial maps of temporal correlation of
predicted variables with the corresponding observations (Fig-
ure 6) and the differences in correlations with and without
optimal initialization (Figure 7). Optimal initialization results
in improved correlations by ;0.2 in most parts of the equato-
rial region for SSTA and SSHA and in the central equatorial
Pacific for zonal PWSA. The improvement of 0.2 is close to the
95% significant level of the correlation values and is thus
marginally significant. It is worth noting that optimal initializa-
tion improves the correlation in the central equatorial Pacific,
although the rms deviation from data is larger (Plate 8d).
Therefore, despite the large and premature cooling in the
central equatorial Pacific at longer lead times the overall ten-

dency of the predicted SSTA in that region is not degraded by
optimal initialization.

Like the assimilation, these improvements are due to the
combined effect of (1) the dynamically consistent initial state
that is close to observations and (2) parameters that are de-
termined from several types of observations preceeding the
forecasts. The improved initial state has a larger impact on
prediction in short lead time (the first few months). The esti-
mated parameters properly set the relative strength of forcing
and damping. This allows the anomalous model state to evolve,
in longer lead time, into a large warming event that has a more
realistic peak timing and amplitude in contrast to the prior
parameters with which the anomalous model state is damped
out quickly.

Figure 5. Predicted and observed longitude-time distribution of zonal pseudo wind stress, surface, temperature,
and sea level anomalies at the equator. The predictions are obtained from forecasts starting in July 1997.

26,081LEE ET AL.: DATA ASSIMILATION INTO COUPLED MODELS



7. Discussion: Parameter Estimation
In sections 5 and 6 we mentioned the role of parameter

estimation during the assimilation and its impact on forecast.
In summary, the assimilations generally result in larger drag
coefficients and smaller damping coefficients (baroclinic fric-
tion and SSTA relaxation constant) than their corresponding
prior values. The combination of these adjustments enhances
the strength of wind forcing and reduces the damping in the
ocean component and thus allows the coupled model to fit the
data better during the assimilation and to develop a large-
amplitude warming anomaly during the forecast. In this sec-
tion, the role of parameter estimation is further evaluated.

As an example to illustrate the individual role of various
parameters and their combined effect, Plate 10a shows the
estimated Niño3 SSTA resulting from the experiment during
December 1996 to June 1997 and those obtained by turning off
the adjustment of various parameters one by one as well as
simultaneously, keeping the estimated initial state unchanged.
Turning off the adjustment of any of these parameters is seen
to decrease the model’s skill in reproducing the rapid devel-
opment of SSTA. When the solutions are integrated forward
into the forecast period (Plate 10b), the impact of resetting the
estimated parameters to prior values is even more significant.
Therefore the optimal adjustment of the drag coefficient, ba-
roclinic frictions, and SSTA relaxation constant all contribute

positively toward the model’s improved ability to evolve into a
large-amplitude warming event. Yet the combined effect of
various parameter adjustments has the largest impact.

In a recent study, Bennett et al. [1998] fitted 1 year’s worth
(April 1994 to March 1995) of monthly mean anomaly of
Reynolds’ SST, Z20 (depth of the 208C isotherm, the approx-
imate thermocline depth) and surface wind velocities from the
TAO measurements to a modified Zebiak and Cane [1987]
model using both a weak and a strong constraint formulation.
In the weak constraint case, deviation from model dynamics is
allowed subject to a dynamical misfit penalty in the cost func-
tion in addition to model-data misfit. In the former formula-
tion the fit to the data is largely within assumed standard errors
of data (0.38C, 3 m, and 0.5 m s21 for anomaly SST, Z20, and
surface wind velocity, respectively), but the dynamical misfit is
larger than the estimated standard errors of dynamics. In the
latter formulation, where model dynamics were assumed “per-
fect” (equivalent to the adjoint formulation with all the model
errors attributed to initial state only), the estimated spatial
structure of SSTA bears little resemblance to that in the data;
the estimated Z20 and wind velocity are even more “unrecog-
nizable.”

Our findings do not contradict those of Bennett et al. [1998]
for several reasons: (1) We not only adjust initial conditions
but model parameters as well. The latter partially compensates

Figure 6. Correlations between forecasts and the data: forecasts (a)–(c) without and (d)–(f) with data
assimilation before the prediction for surface temperature, sea level, and zonal pseudo wind stress anomalies.
Shaded areas indicate insignificant correlations.
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for some model errors. We have performed experiments by
adjusting initial conditions only. Understandably, the resultant
fits deviate from the data more than the case where parameters
are adjusted. An example is shown in Plate 11 in which the
estimated SSHA in July 1997 with only initial state adjusted
compares poorer to the data than that with both initial state
and parameters adjusted. (2) Coupled models are often sensi-
tive to small changes in parameters and numerics, let alone
difference in physics. Our coupled model is sufficiently differ-
ent from the modified Zebiak and Cane [1987] model that the
skill of fitting the data could be different. (3) The data errors
used by Bennett et al. [1998] are smaller than those adopted
here: for example, 0.38C versus 0.58C for SSTA and 0.5 m s21

versus about 3.33 m s21 (squared root of 10 m2 s21) for wind
speed. The values used by Bennett et al. [1987] were considered
to be measurement errors only, whereas the ones we used were
meant to include some model errors.

8. Concluding Remarks
Sea level, surface temperature, and pseudo wind stress

anomaly data during the 1997–1998 El Niño are assimilated
into an intermediate coupled model of the tropical Pacific over
various 6 month periods. Model-data misfits are minimized by
optimally adjusting initial state and model parameters using
the adjoint method. With these adjustments the coupled model

is found to have a reasonable skill in reproducing observed
interannual variability of SST and sea level. The overall resid-
ual model-data misfits are close to the a priori errors (0.58C
and 5 cm, respectively). The ability to reproduce observed
variability of pseudo wind stress anomalies is improved in the
equatorial band as a result of the assimilation. However, the
skill off the equator is rather limited. The residual model-data
misfit in pseudo wind stress anomalies is larger than the a
priori error of 10 m2 s22.

The forecasts of the 1997–1998 El Niño initialized from the
assimilation product are more realistic than those without data
assimilation. Consistent improvement due to the optimal ini-
tialization is found at least in the central-eastern equatorial
Pacific for SST and sea level anomalies and in the central
equatorial Pacific for zonal pseudo wind stress anomaly. Av-
eraged over lead times of 1–12 months, the reduction of rms
deviation from the data is 0.58–18C, 4–7 cm, and 5–10 m2 s21

for the three variables in the areas mentioned above. In terms
of correlation with the data the level of improvement is 0.2
over most parts of the equatorial Pacific for SST and sea level
anomalies and in the central equatorial Pacific for zonal
pseudo wind stress.

The estimation of parameters plays a significant role in im-
proving the model fit to the data both during the assimilation
and the forecast. This is because the estimated drag coefficient
and damping constants, determined inversely from data during
the assimilation period, properly regulate the relative strength
of forcing and damping of the anomalous ocean state. This
enables the rapid development of a large amplitude warming
event during the forecasts. Parameters values reported in the
present study are estimated from a short period of data with an
unprecedented magnitude of the anomalous state. Therefore
they should not be considered as climatological values for the
prediction of overall variability in previous data.

This initial attempt demonstrates the utility of several types
of oceanic and atmospheric data for estimating the initial state
and model parameters simultaneously in a coupled model con-
text. The methodology is potentially useful to the initialization
of ENSO forecast models as it minimizes initial shocks. It also
highlights some limitations of such a simple coupled model in
accounting for the observations and in delivering ENSO pre-
diction even when several types of data are used in the initial-
ization phase. There are several aspects that the optimal ini-
tialization did not (and will not) improve. These include the
failure to predict the warming event before the westerly wind
burst in March 1997 and the abrupt return to normal condition
shortly after the easterly wind burst in May 1998, both of which
present a grand challenge to the current ENSO forecast mod-
els. Improvement of the forward model is an indispensable
step to bring about significant progress. For example, a better
atmospheric component to reduce the large residual of model-
data misfit in wind and to properly handle the asymmetry
between warm and cold events.

Refinements of the assimilation scheme would also improve
the estimates of model state and parameters and thus the
forecasts. These include (1) a better prescription of the weight-
ing for the model-data misfits to reflect model representation
error and (2) explicit constraints of initial conditions and
model parameters using appropriate weightings that accurately
describe the uncertainties associated with the initial state and
parameters.

Figure 7. Differences of correlations with and without data
assimilation before the prediction for surface temperature, sea
level, and zonal pseudo wind stress anomalies.
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Plate 11. Estimated sea level anomalies in December 1997 derived from assimilation experiment from July
1997 to January 1998: (a) with only initial state adjusted, (b) with both initial state and parameters adjusted,
and (c) the corresponding data.
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